

University College of Northern Denmark

IT – Program

PBA in IT Security

PSI-CSD-S23

Malware Reverse
Engineering

Emilie Mavel Christensen

Supervisor: Lars Landberg Toftegaard

Malware Reverse Engineering​ ​ ​ ​ Mavel Christensen

Abstract
This report presents the research, theoretical and practical solutions to the reverse
engineering of malware and the conversion of findings into actionable security
recommendations, along with the processes followed to discover these findings. As malware
are, in essence, simply softwares, the process to reverse engineer one is the same as the
analysis of typical softwares with the addition of technical safeguards. Based on the findings,
it is recommended to segment malware analysis in two parts, static and dynamic, to ensure
analysts cover as much of the malware as required, while keeping in mind anti-forensics
techniques that may be implemented in the malware. Findings can then be converted into
Indicator of Compromises and reports to relay them to relevant parties.
The found research is utilised for the analysis of a malware encountered by a cybersecurity
company called Trifork Security, then converting findings into Indicators of Compromises,
YARA rules and reports usable by the company.

Acknowledgements
The writer of this report would like to extend their sincere thanks to Trifork Security and their
help throughout the development of this document, especially Steven Kvesel Strandlund,
Philip Lyngø and Jacob Elgaard Winther Nielsen and the Managed Security team overall for
their guidance and domain insights. This project would not have been possible without their
knowledge and readiness to help when needed. The writers would also like to thank Lars
Landberg Toftegaard, whose guidance and insights helped shape this report. Finally, the
writer would like to thank Dion Mavel Christensen for his proofreading help and his
interesting reflections about the topics explored in this report.

2

Malware Reverse Engineering​ ​ ​ ​ Mavel Christensen

Table of Content
Introduction and problem statement..6

Problem area..6
Problem statement... 6
Delimitations...7
Report Disposition.. 7

Methodologies..8
Research.. 8
Design-Based Research.. 8
Expected project timeline... 8

Part 1: theory.. 9
Reverse engineering.. 9

General definition... 9
Process.. 9
Static analysis.. 9

Analysing stored strings... 9
Analysing program headers..10
Disassembling code... 10

Figure 1: simplified model of software code translation, from source code to
disassembled code... 11
Source: Practical Malware Analysis[18]..11

Decompiling.. 11
Figure 2: Example of decompiled code (on the left) and the original
disassembled code (on the right) using IDA. Source: Zhuo Zhang[33].......... 11

Symbolic Execution.. 12
Dynamic analysis... 12

Debugging.. 12
Network Forensics..12
Memory forensics... 13
Emulation and sandboxing... 13

Reverse engineering malware..13
Why reverse engineer malware?..13
Common malware types...14
Typical malware anatomy...14
Potential RE findings.. 15
Real world examples.. 15
Anti-forensics techniques... 16

Masquerading...16
Detection of Virtual Machine/Potential Forensics environment............................ 16
Embedded payloads and injections..17
Encryption...17
Obfuscated API calls.. 17
Poly/Metamorphic code.. 17

3

Malware Reverse Engineering​ ​ ​ ​ Mavel Christensen

Packed programs... 18
Conveying RE findings... 18

Using IoCs..18
Figure 3: example of a YARA rule, telling the tool that any file containing one
of the three strings must be reported as silent_banker. Source: YARA
documentation[97].. 18

Reporting..19
Social media posts... 20

Figures 4 and 5: a post sharing IoCs and a thread detailing an attack and
related RE findings... 20
Source: Mastodon[99], X[100].. 20

Part 2: case study presentation..21
Presentation of the analysed Malware... 21

Origin..21
Early assertions about the malware... 21

Analysis technical requirements and environment...21
Analysis tools... 21

Tools... 21
Analysis methods... 22
Conveying findings... 22

Part 3: Analysis.. 23
Analyzing the downloader, “pennicle.txt.ps1”...23

Static code analysis..23
Figure 7: content of pennicle.txt.ps1...23

Dynamic Analysis... 24
Figure 8: creation of a new folder by the malware..24

Analysing the additional payload, “GetWindowText.exe”... 25
Examining additional files in the .zip.. 25
Investigating the malware’s metadata.. 25

Figure 9: metadata of the malware and OG version of GetWindowText........ 26
Figures 10 and 11: digital signature and certificate of OG software............... 27

Analysing the program header... 27
Imported libraries and functions... 27

Analyzing stored strings... 28
Figure 12: screenshot of some defined strings in the malware, the suspicious
one being highlighted... 28

Deobfuscating the suspicious string... 28
Figures 13 and 14: excerpts from tidied-up string.. 29

Disassembling and decompiling...30
Figure 15 and 16: examples of one’s findings when trying to find context for
the string “crypto/rsa”..30
Figure 17: function call graph starting from the “entry” function..................... 31
Figure 18: example of the malware’s “while true” loops................................. 32

Symbolic Execution.. 32
Debugging.. 32

4

Malware Reverse Engineering​ ​ ​ ​ Mavel Christensen

Figures 19, 20 and 21: examples of references to Windows Registers in the
debugged malware... 33
Figure 22: example of process injection... 33
Figure 23: potential file extensions hidden in the malware.............................34
Figure 24: functions and data types hidden in the malware........................... 34
Figures 25, 26 and 27: code hidden in the malware that hints at json and yaml
formatting and exfiltration capabilities.. 34

Network Analysis..35
Figure 28: Suspicious queries recorded by Wireshark................................... 35
Figures 29 and 30: VirusTotal analysis results for the malicious URLs.......... 36
Figure 31: logs from the mock API... 37

Memory analysis.. 38
Figure 32: screenshot of an analysis of the suspected malware performed by
VirusTotal..39

Conveying findings... 39
IoCs.. 39

Table 1: various IoCs from the analysed malwares.. 40
Analysis report..41
Blog posts...41

Conclusion..42
Bibliography... 43
List of Images... 50
List of Tables.. 51

5

Malware Reverse Engineering​ ​ ​ ​ Mavel Christensen

Introduction and problem statement

The term “malware”, a portmanteau of malicious software[1], defines any software designed
to cause disruption to the confidentiality, integrity or availability of a computer system and the
data it contains.[2] They come in many shapes (Remote Access Trojans (or RATs), spyware,
ransomware, etc.[3]) and are delivered through various means (phishing, vulnerability
exploitation, etc.[4]).

Malware has been around for almost as long as computers using integrated circuits have
existed and, although the first recorded malwares were innocuous[5], they have since
become attack tools developed with deliberate malicious intents[6], used by state actors[7]
and e-criminals alike. According to Crowdstrike, 25% of cyber attacks get access to target
systems with malware[8], and Darktrace declared in its end of year 2023 report that
“malware-as-a-service” was now the biggest threat to companies[9].

This project aims to research and suggest a practical solution to perform malware analysis
and ensure this endeavour can lead to the creation of actionable security recommendations
for IT security companies and their clients to follow during and after an attack.

Problem area
The need for IT security companies to analyse malware and convey findings from said
analysis has become evident. Although they can use knowledge and tools parameterized to
recognize malicious software early on in the cyber kill-chain and stop it in its tracks[10],
nefarious actors are always developing new strains of malware that can evade automated
detection.

However, analysing malware is only half of the battle, as only highly technical persons can
perform such analysis. A process to convey findings from said analysis into understandable
and actionable information for laymen is essential for a company to spread its knowledge.

Problem statement
In order to guide the project towards a potential solution to this problem, the following
research and implementation questions have been devised:

●​ How can Malware Reverse Engineering be used to improve a company’s security
posture?

○​ How can one reverse engineer malware?
○​ What kind of information can one extract from reverse engineering malware?
○​ How can one convert reverse engineering findings into actionable security

recommendations?

6

Malware Reverse Engineering​ ​ ​ ​ Mavel Christensen

Delimitations
Given the scope of this project, some areas related to malware collection and analysis will
not be explored in depth, such as the processes to obtain forensically sound copies of an
infected system, the creation of secure sandboxes to analyse malware or the concrete
implementation of security recommendations. To reduce the scope of this report, reverse
engineering of malware designed for handheld-devices, such as phones and tablets, will not
be investigated. Additionally, this report does not intend to summarize current state of the
art, and will thus only present current knowledge relevant to malware reverse engineering
and the malware analysed in this report.

Report Disposition
This report first presents the methodologies followed during the project and the research
performed to understand the problem domain. A solution that aims to resolve the problems
stated in the problem statement is then presented, followed by a detailed presentation of its
enactment. Finally, a reflection on future possible work on the project concludes this report.

7

Malware Reverse Engineering​ ​ ​ ​ Mavel Christensen

Methodologies

Research
Malware Reverse Engineering is a vast subject that has many different domains,
applications and practices to consider. It is a subject that has not been covered during the IT
Security PBA programme, meaning the student lacks knowledge about the topics of safe
analysis and reverse engineering of malicious software and the extraction of security
recommendations from said analysis.

Therefore, an investigation into the aforementioned topics is needed. The research will be
focused on relevant literature, technologies and best practices used by security
professionals, and will serve as a foundation to solve the problems stated previously. The
relevant parts of the research will be presented in the report.

To help find relevant literature, the student will use snowballing, where the reference list and
citations of qualitative papers are reviewed to identify new papers [11], and search for those
papers in research databases such as UCN’s internal library or ScienceDirect[12].

Design-Based Research
Despite being structured around a topic that requires a lot of research, this project should
also be presented through a practical angle. As such, once enough research has been
collected, the student will attempt to answer the problem presented previously in “Problem
Statement” by designing an approach that will apply the accumulated research, then iterate
over both research and application as needed.

This approach is called Design-Based Research[13] and helps researchers continuously
evaluate and adjust their approach to resolve an issue while keeping a practical angle in
mind.

Expected project timeline
The concrete project timeline was not set ahead of time, as this project relies on researching
and experimenting with topics previously unknown to the student. The research phase could
drastically change the student’s approach to resolving the problem at hand, making it
impossible to make a detailed project plan. A general structure was, however, settled upon,
to make sure UCN’s bachelor project requirements would be reached in time: the whole
month of November will be centred around research about malware reverse engineering
theories,, and December will be focused on designing and enacting a solution to the
aforementioned issues. No agreement has been made for the last two weeks of the project,
as the state of this project at that time is still uncertain. It is expected, however, that most of
the work left to complete will be related to the writing and editing of this report.

The report should be updated in parallel, documenting all relevant information and significant
progress made.ˇ

8

Malware Reverse Engineering​ ​ ​ ​ Mavel Christensen

Part 1: theory
As malware is, in essence, simply software, this report will first look into generic software
reverse engineering before diving into the specificities of malware reverse engineering.

Reverse engineering

General definition
Reverse engineering (or RE) is “a process or method through which one attempts to
understand through deductive reasoning how a previously made device, process, system, or
piece of software accomplishes a task”[14]. It can be used for various purposes: repurposing
obsolete objects, gaining a competitive advantage or simply teaching someone about how
something works.

No matter how the knowledge is used or what it relates to, RE is the process of gaining that
knowledge from a finished object[14], [15].

Process
Software is a set of instructions, data or programs used to operate computers and execute
specific tasks[16]. It usually takes the form of an executable file, which is a computer file that
contains instructions in binary code that will guide a computer’s central processing unit
(CPU) through running the program[17].

There are two approaches to RE: static and dynamic analysis. Static analysis involves
examining software and its code without running it, while dynamic analysis involves running
the software and directly examining its effects on a system[18], [19]. The former can be done
using, among other things, a disassembler and/or decompiler while the latter can be done
using, for example, sandboxing[18].

The report will go through the two aforementioned types of code analysis, static and
dynamic, and detail tools and methods used to perform each of them. Part of the listed tools
or methods will be used to resolve the issue presented in the “Problem Statement” section of
this report.

Static analysis
Static analysis is usually the first step in reverse engineering a software. It is the process of
analysing the code or structure of a program to determine its functionalities without running
it. It is safer than dynamic analysis, which will be described in depth later in this report, as it
does not require the analyst to run the malware to dissect it. However, it will be unable to
detect and present the analyst with runtime specific behaviour, and the analysed code will
not be rid of potential obfuscation techniques[20].

Analysing stored strings

A common first step, during static analysis, is to look at the strings stored in the program.
They can be discovered using a disassembler or specialised software, such as the one

9

Malware Reverse Engineering​ ​ ​ ​ Mavel Christensen

named Strings[21], and can hold information such as function names, error messages or IP
addresses.

String discovery relies on the fact that strings are usually stored in ASCII or Unicode format
and end with a NULL terminator. This means, however, that any sequence of bytes followed
by a NULL terminator will be interpreted as strings, even if they are not actual strings[18].

Analysing program headers

The Portable Executable (PE) file format is used by Windows executables, object code, and
DLLs, and contains the information necessary for the Windows OS loader to manage the
wrapped executable code. PE files begin with a header that includes information about the
code, the type of application, required library functions, and space requirements, which is of
great value to the analyst.

For example, if an analyst can see in the required library functions that a program uses the
function URLDownloadToFile, the analyst might infer that it connects to the Internet to
download some content that it then stores in a local file[18].

One can analyse PE headers using software such as PEview[22] or pestudio[23].

Disassembling code

Programming languages can usually be categorised into one of two types: compiled or
interpreted languages, although exceptions such as Java[24] exist.

Compiled languages, such as C or C++, are programming languages that can be translated
to machine code, allowing the targeted hardware to directly process the instructions given by
the program. The compiled code is optimized for the specific hardware and OS of the
machine it is intended to run on.

Interpreted languages, such as JavaScript, cannot be directly translated to
machine-readable code. They are instead interpreted: when a user executes a program
written in an interpreted language, it is executed by an interpreter, which will read the source
code line by line and execute them.[25], [26], [27]

Describing in depth the way these two types of languages function and can be reverse
engineered goes out of the scope of this report. For simplicity’s sake, this report will only
cover the RE of compiled languages. The subtleties of the assembly language and its
variations based on a microprocessor’s family will also be ignored in the following section.

When a programmer releases code, said code goes through a process called compilation.
Compilation translates code from the language it was written in into a form the computer can
execute, for example machine code. These languages are abstruse for humans and cannot
be deciphered without being translated back to a human-readable language. This process of
“translating back” code is called disassembly: the machine code is translated to a low-level
language called assembly, which is the highest level language that can be reliably and
consistently recovered from machine code, as pictured in figure 1[18].

10

Malware Reverse Engineering​ ​ ​ ​ Mavel Christensen

Figure 1: simplified model of software code translation, from source code to disassembled code.

Source: Practical Malware Analysis[18]

Although assembly code is complex and can be hard to read, it can be worth looking into to
understand and label chunks of code early on during code analysis. For example, if an
analyst encounters a function containing only logical, shifting and roll-over instructions
repeatedly and seemingly randomly, they can assume they have encountered an encryption
or compression function and can label that chunk of code as such, without needing to
analyse this part of the code in depth[18].

Disassembly can be performed using tools such as IDA Pro[28] or Ghidra[29].

Decompiling

One can go one step further and decompile code that has been disassembled, meaning
converting assembly code into a higher level language that is more easily understandable for
a human[30]. The decompiled code is not a copy of the code originally written by developers,
only an educated guess based on the behaviour of the binary and assembly code[18], [31],
but it makes for a more readable starting point for a static code analysis, as pictured in figure
2.

Decompiling can usually be performed with the same tools as one would use to disassemble
a program.

Figure 2: Example of decompiled code (on the left) and the original disassembled code (on the right)

using IDA. Source: Zhuo Zhang[33]

11

Malware Reverse Engineering​ ​ ​ ​ Mavel Christensen

​ Symbolic Execution

Symbolic execution (or SymEx) is a dynamic program analysis technique that determines
which inputs (or input groups) cause which specific part of a program to execute without
requiring the programmer to specify them. To do so, symbolic execution uses symbolic
values instead of regular input values, which allows the analyst to construct a result that can
be expressed as an equation (or a system of equations) of these symbolic values which can
be solved mathematically using Satisfiability Modulo Theories[32], [33].

In practice, the “Symbolic Executor” (be it a specifically designed software or the analyst
themself) takes a program in an executable form (e.g., x86 binary, LLVM bitcode, or JVM
bytecode) and produces a list of inputs that trigger different code paths in the program. This
technique can, however, lead to the creation of SymEx trees that can be overwhelmingly
large, especially when dealing with loops, and does not lead to complete results when used
against an incomplete or obfuscated code base[32].

Symbolic execution can be performed manually or with the help of tools such as angr[34].

Dynamic analysis
Usually performed after a thorough static analysis, dynamic analysis involves monitoring
software as it runs or examining a system after some specific software has executed.[18]
Multiple tools can be employed to monitor the effects of the software: for example, one can
use a debugger and breakpoints to follow the code and its branching paths, or set up
network monitoring with tools such as Wireshark[35] to keep an eye on any outgoing or
incoming traffic related to the software and its functions.

Debugging

A debugger is a tool used to test or examine the execution of a program while said program
is running[36]. Debuggers usually give analysts or programmers the possibility to put
breakpoints in the code, which when reached, will pause the execution of the program to
give the analyst/programmer the possibility to look into (and even change the value of)
current variables[18], [37]. Debuggers can also pause code execution when an exception is
thrown by the computer, so that an analyst/programmer can try to understand what triggered
the exception[38].

A debugger and breakpoints can be useful tools to understand code. For example, one can
put a breakpoint at an if statement, then observe the variation in the code execution based
on the value fed to that if statement. This interactive, step-by-step process can give analysts
valuable insight into the code[39].

One can debug a program using tools such as x64dbg[40] or Visual Studio Code[38].

Network Forensics

If the analysed software has network capabilities, for example by retrieving remote data via
HTTP requests, one can perform network forensics to learn more about it. One can use,
among others, a technique called packet sniffing, during which a software such as the
aforementioned Wireshark will sniff all inbound and outbound packets on a network or a

12

Malware Reverse Engineering​ ​ ​ ​ Mavel Christensen

specific network card. The captured packets will hold data such as the protocol used by the
analysed software to communicate remotely, the address it was trying to contact and the
content of the packet.

Memory forensics

Another way to perform dynamic analysis is letting the malware run in a controlled
environment then collect and analyse the environment’s memory, using tools such as
Volatility[41]. Doing so will allow an analyst to observe the state of a system at a specific
point in time and the data that is held in the system’s volatile memory[20].

Emulation and sandboxing

Automated tools are available to analysts who wish to perform dynamic analysis of malware
while keeping risks for their systems safe. Those automated tools are emulations and
sandboxes such as Cuckoo Sandbox[42] or Any Run[43], which run the malware in local or
online virtual machines for a set amount of time and record all changes made to the virtual
system. Some of these tools can even generate pre-filled reports about the results of the
emulation[20].
​
However, these tools present some issues: code samples that are analysed can be shared
with other users of that tool, or even freely available online. If a victim of a very specific
malware shares said malware on one of these online tools, their attacker can be made
aware that their attack has been detected, which can lead them to learn from this and
develop stealthier malwares[44]. Furthermore, as these tools are automated, they cannot
prevent malware from running their anti-forensics/anti-VM functions, which are growing more
common by the day[45].

Reverse engineering malware
In the realm of cybersecurity, RE can be used for vulnerability discovery or malware
analysis[46], [47]. Malware analysis, according to Sikorski and Honig, is the art of dissecting
malware to understand how it works, how to identify it, and how to defeat or eliminate it.[18]

The techniques to reverse engineer malware are the same as the ones used to reverse
engineer software, which were presented in the previous section, although analysts should
have a safe environment set up if they wish to dynamically analyse a malware. Virtual
machines are usually recommended for these tasks, though the description of such
technology and its setup goes outside the scope of this report.

Why reverse engineer malware?
Malware Reverse Engineering (or MRE) can be done for various purposes. Understanding
how malware operates and its purpose can help researchers determine how to remove it
from or defend a system against it[48]. For example, one could use findings from MRE to
develop signatures usable by endpoint protection software, to allow it to detect and
quarantine malware as soon as it lands on a machine[18]. Such signatures will be described
in a later section of this report, entitled “Potential RE findings”. MRE can also help
researchers understand which vulnerability the malware exploits to contaminate a device,

13

Malware Reverse Engineering​ ​ ​ ​ Mavel Christensen

which can then be relayed to the developers of said device to help them patch and secure
it[20], [49].

Common malware types
Malware can take on many shapes, and classifying it can be a challenge. What were early
types of malware, such as worms[50], have evolved into common malware spreading tactics
and techniques[51], [52], [53]. Here is a non-exhaustive list of commonly encountered
malware, based on data provided by companies specialising in antivirus and endpoint
detection and response services[54], [55], [56], [57]:​

-​ Adware: adware is unwanted or malicious advertising on a device, taking for
example the shape of unexpected pop-ups on a system or redirects when browsing
the web. It is usually harmless in itself, although it may hamper the endpoint’s
performance and can covertly collect data from the infected system. The products
and links presented in the malicious ads usually link to more harmful types of
malware.

-​ Spyware: spyware monitors and collects the activities of users before sending it
back to a remote system. It is usually made of several other types of malware, such
as rootkits, keyloggers or trojans.

-​ Virus: a virus is malware that can encrypt, corrupt, delete or move data and files, and
which can spread to other systems. It requires human action to spread, for example
via the execution of infected software.

-​ Worms: a worm is malware that can duplicate itself and spread to other systems
without human interaction.

-​ Trojan: a trojan is a type of malware that presents itself as innocuous and legitimate
or which code is hidden in other software, but will deploy itself when executed by its
victim.

-​ Ransomware: ransomware encrypts a device’s data and keeps the decryption key
secret until a ransom is paid. Victims of ransomware are often victims of further
extortion (such as blackmail).

-​ Fileless malware: fileless malware usually executes itself in memory or creates
persistence by modifying files that are native to the operative system of the infected
device, such as the Windows registry.

Typical malware anatomy

As classifying malware is complex, so is describing the anatomy of typical malware. Some
malware, for example Stuxnet[58], are like swiss army knifes, built to embed itself in
operative system files, spread itself and modify data on the infected systems, while others
like Lumma Stealer[59] are built to download additional payloads which contain further
instructions to abuse the infected system.

Typically, malware tries to be as stealthy as possible, and malware developers recommend
writing as little code as possible to limit the size of the final compiled malware[50], and it is
not uncommon nowadays for adversaries to infect a system with a “dropper” (which is
malware with an embedded payload that will unpack it once it has successfully infected a
system) or a downloader (which downloads additional payloads once it has infected a
system)[51]. This can be confirmed by visiting MITRE ATT&CK, a knowledge base of cyber

14

Malware Reverse Engineering​ ​ ​ ​ Mavel Christensen

adversary behaviour[62]: according to MITRE ATT&CK, a common defence evasion tactic
for malware is the embedding of payloads[63].

Potential RE findings
A common goal in RE is finding Indicators of Compromise (or IoCs)[18]. An IoC is a piece of
information that can uniquely identify a piece of malware, and can be of three types[64], [65]:

-​ Atomic IoC: small, concrete IoC that can uniquely identify a malware sample. It
includes among others domain names, IP addresses, unusual strings, email or
bitcoin wallet addresses.

-​ Computed IoC: an IoC that is made with information derived from the analysed
malware. It can be for example hash values of the malware files or geolocation of IP
addresses.

-​ Behavioural IoC: an IoC that is derived by the observation or abnormal patterns in
host or network activity. It can be, for example, activity over unused ports,
communication with foreign IP addresses or changes to the registry.

Reverse engineering malware can give analysts an idea of how a system will be modified or
used by the malware to perform its malicious functions. These observations can then be
converted into reliable IoCs, which can be considered signatures of this malware and can
then be used by endpoint protection software to recognize and prevent that specific malware
from impacting a system.

Another common RE finding is a hash of the analyzed malware. A hash is the product of a
hash function, which can take an input of bits of any size and produce a unique, fixed-sized
output using a one-way encryption function[66]. This unique value can be used as a
signature by endpoint protection softwares: if any software on a system has a hash that
matches the hash value of a known malware, it is considered malicious and should be
blocked or deleted.

Real world examples
MRE has had real worldwide benefits, thanks to researchers’ findings. One of the most
famous examples of the benefits of MRE is the reverse-engineering of the ransomware
called Wannacry, which contaminated an estimated 230,000 Windows computers, from both
public and private institutions, in one day[67], [68].

Marcus Hutchins, a British security researcher, analysed the malware early on. During his
RE, he found that the malware tried to connect to a specific url and behaved differently
depending on the answer it got back. It turned out, later on, that this url acted as a killswitch:
if querying it returned a 200 response, the ransomware simply shut itself down.

Hutchins bought the domain to get data about the amount and location of infected systems,
which unknowingly stopped the spread of this Wannacry strain[69].

The story, however, didn’t stop there. A few days later, another strain of Wannacry emerged,
and another security researcher called Matt Suiche reverse engineered the code only to find
that the killswitch still existed: the only change between the first and second strain was that
some characters of the url had been flipped around. He bought this second domain and, with

15

Malware Reverse Engineering​ ​ ​ ​ Mavel Christensen

that, stopped that second strain in its tracks[70]. It was only in the fourth variant of the
malware that the killswitch was removed.

Another more recent example is the RE of Qakbot. This malware, classified as a banking
trojan, worm and RAT, has been used by ransomware gangs to both steal credentials and
install further malware on infected devices[71]. It is estimated that said gangs have earned
more than 60 million USD in ransom payments[72]. In August 2023, a coordinated
multinational action led to the seizure and takedown of the infrastructure running Qakbot. On
top of that, the FBI announced they were able to redirect traffic from infected machines to
FBI-controlled servers. Doing so allowed them to control the additional payloads the
malware would download and, instead of letting it download more malicious code, made the
malicious software download a file that would uninstall said malware on the infected
machine[73].

Although the FBI does not share the process behind the development of this uninstaller, it
can be assumed that it started with a thorough RE of Qakbot. Additionally, some security
researchers had already found a “vaccine” to prevent the spread of the malware: it was
revealed, thanks to MRE, that the malware looked for the file “C:\INTERNAL__EMPTY” and
would shut itself down if it was found. This meant that any computer with this file was safe
against further damage from Qakbot[72].

Anti-forensics techniques
Malware writers often use anti-forensics or obfuscation techniques to make their files more
difficult to detect or analyse. Many techniques are known and used by malware authors[60],
[74], but only relevant ones will be listed in this section of the report.

Masquerading

Malware authors will sometimes manipulate features of their malware to make them appear
legitimate and evade detection, using a technique called Masquerading[75]. This may
include manipulating file metadata (name, icon), reusing information from valid code
signature to make their software look legitimate[76] or using double file extension to conceal
dangerous file types (for example by naming their file “File.txt.exe”)[77].

One way to discover the issue is comparing the masquerading malware to the software it
pretends to be, or verify the source from which the malware was downloaded.

Detection of Virtual Machine/Potential Forensics environment

Malware authors do not want their malware analysed and dissected, and as such often
implement obfuscation techniques to prevent the malware from running in a virtual machine.
This can be done in various ways: for example, a malware can enumerate the running
processes and open windows and try to detect known forensics tools among them[78] or
look for a file that is typical of some type of virtual machines[72]. If the malware suspects it is
in a controlled environment for the purpose of being analysed, it will stall or stop its process.

16

Malware Reverse Engineering​ ​ ​ ​ Mavel Christensen

This technique can be evaded in different ways, for example by removing files on the virtual
machine the malware may be looking for or by evading the virtual machine check when
dynamically stepping through the code.

​ Embedded payloads and injections

As mentioned previously in this report, nested/embedded payloads are a common defence
evasion tactic employed by malware[63]. This means the adversary embeds payloads within
other files to make it look legitimate. A variant of this technique is process injection, in which
an adversary injects code into other processes to make it look legitimate or elevate
privileges[79].

One way to deal with it is by going through the malware code and looking for long strings or
debug the malware and see which processes are killed and/or started as one steps through
the code.

Encryption

Another common obfuscation technique for malware is the use of encryption, either to
encrypt significant strings or encrypt communication between a malware and a Command
and Control (or C2) server. Encrypting these strings can make them hard to recontextualize
during a static analysis of the code[78], [80]. Although one can argue these strings will likely
be decrypted at runtime and are, as such, not obfuscated forever, running a malware always
incurs a risk for the analyst.

​ Obfuscated API calls

API calls are commonly obfuscated in malware in order to delay analysis and to prevent
simple methods from being used to understand the malware. Commonly used API call
obfuscations include the use of an API call handler function that may be passed integer or
hash values representing the API to be called. Another technique is to copy API code to a
new memory allocation within the malware program[81], [82].

One way to mitigate this is to statically go through the code and track the changes in
memory allocation of an important API.

​ Poly/Metamorphic code

Poly/metamorphic malware is malicious software which can change its code, for example by
permuting its functions or running a mutation engine on itself to appear like a different file
every time it is downloaded and decrypted[83], [84]. This means that static analysis of a
same malware strain will lead to different findings, making it difficult for analysts to associate
a malicious software to a specific malware strain or develop efficient ways to block that
malware[83], [85].
​
This can be mitigated by developing Indicators of Compromise, a concept that will be
explored later in this chapter, that are a bit more generic so that they can identify related
pieces of malware, without making them so generic they generate many more false positives
than true positives.

17

Malware Reverse Engineering​ ​ ​ ​ Mavel Christensen

Packed programs

Packed programs are a subset of obfuscated programs in which the malicious program is
compressed, concealing vital program components and making its original code and data
unreadable[18], [86]. A packer encrypts the original executable and stores it as raw data into
a new executable file that contains code for decryption. If the new file is executed, the
original code is decrypted in memory and executed[87]. Packers have been used for a long
time for legitimate purposes such as reducing file sizes and protecting software against
piracy[88].

There exists, however, a variety of software to identify and unpack packed programs, such
as Exeinfo PE[89] and PEID[90].

Conveying RE findings
Analysing malware is only part of an analyst’s responsibilities. Findings are worthless if they
are not converted into actionable knowledge and shared with relevant parties[91].

Using IoCs
One way an analyst can turn their findings into actionable information is by extracting IoCs
from their analysis. An analyst can, for example, make a hash of the analysed malware, or
list the IP addresses and domain names encountered in the malware[92].

Once those IoCs have been established, the analyst can forward them to relevant partners
who can implement them in their antivirus or endpoint detection and response systems of
choice[93]. A common way to develop IoC is to use YARA[94], a tool that allows security
researchers to write JSON-like rules, as pictured in figure 3, to help systems automatically
identify malware and malicious files.

Figure 3: example of a YARA rule, telling the tool that any file containing one of the three strings must

be reported as silent_banker. Source: YARA documentation[97]

18

Malware Reverse Engineering​ ​ ​ ​ Mavel Christensen

Reporting
Reporting involves documenting the findings from the malware analysis in a clear,
structured, and actionable format. It is crucial for sharing insights with various stakeholders,
from technical analysts to business leaders, and guiding future defence strategies[91], [95].

As MRE can be part of an Incident Response forensics process, it makes sense for an
analyst to look into forensics reporting recommendations and guidelines. The Forum of
Incident Response and Security Teams (or FIRST), an international organisation whose goal
is to bring together Incident Response and Security teams from all around the world[96], has
thorough reporting guidelines for malware analysts[95].

First, one should contextualise the report and researched malware in a way that is
understandable to both professionals and laymen. This first section should include:

-​ How the analysed sample was discovered
-​ The type of malware with a brief description of its functionalities
-​ What makes the analysed samples interesting and in what way it can be

dangerous to constituent organisations
-​ Proposals on how the sample may be disarmed or other means in which

renders it ineffective

Once the analysis has been contextualised, the analyst can dive into the technical part of the
report, including (but not limited to):

-​ Sample filenames and hashes (e.g. MD5, SHA1, SHA256)
-​ Sample type and classification
-​ Description of key information about the sample, such as:

-​ How it is deployed to machines
-​ How it achieves persistence
-​ What anti-analysis techniques it uses and what tools or methods were used to

counter them
-​ What its capabilities are

If the analyst can determine the threat actor behind the development of the malware, either
through contextual clues or leads discovered during one’s analysis, a description of the
threat actor and their usual modus operandi can follow the technical part of the report.

Finally, an analyst can conclude the report with recommendations on how to protect oneself
from the analysed malware, on top of a summary of observed tactics, techniques and
procedures (TTPs) by providing MITRE ATT&CK mapping[74]. Such recommendations can
also include Indicators of Compromise (or IoCs), which can help detect the analysed
malware and its associated malicious activities.

FIRST recommends analysts, on top of creating report templates, create guidelines outlining
how information provided in reports should be anonymized and which audience can have
access to which information. If the analysis report is destined for internal use, it will not
require the same level of redaction as a report that will be shared online.

19

Malware Reverse Engineering​ ​ ​ ​ Mavel Christensen

Social media posts
An unorthodox way security researchers share their findings is via publications on blogs and
social media. Sharing discoveries via these informal platforms gives researchers flexibility
and an easy, instantaneous way to share information and discuss malware with other
cybersecurity experts, on top of being a good marketing tool for companies and freelancers.

For example, Google’s Project Zero, which studies zero day exploits, semi-regularly shares
their findings and techniques on their blog[97]. There are also many cybersecurity service
providers, such as Huntress[98] or Crowdstrike, who share their processes and success
stories on their platform.

Other platforms of choice are X and Mastodon, where users can either share one-off
messages or longer threads that summarize their RE findings, as pictured in figures 4 and 5.

Figures 4 and 5: a post sharing IoCs and a thread detailing an attack and related RE findings.

Source: Mastodon[99], X[100]

20

Malware Reverse Engineering​ ​ ​ ​ Mavel Christensen

Part 2: case study presentation
The following section will present the concrete steps taken and requirements to analyse a
chosen malware and answer the questions presented in the Problem Statement of this
report.

Presentation of the analysed Malware
The following section will present the context in which the malware that will be analysed in
part 3 of this report was encountered.

Origin
The malicious software that will be analyzed for this report has first been encountered
mid-October 2024 by Trifork Security, when a user tried to access a streaming website of
questionable reputation. Although the details as to why are unclear, the user downloaded a
file named “pennicle.txt.ps1” from said website and opened it. The file turned out to be a
powershell script which downloaded a .zip file from a known C2 server. By doing so, the
malware triggered one of TS’ alarms and was taken care of.

Early assertions about the malware
Based on the context in which the malware was discovered and the name of the file, which a
non-tech literate may interpret as a text file[101], it can be asserted the malware is a trojan,
as it presented itself as an innocuous file at first sight.

Considering the malicious powershell script tried to download data from an online source, it
can also be assumed the code is a downloader that tries to download additional payloads
once it has infected a system.

Analysis tools and environment
As per industry standards and recommendations, the analysis was performed in various
virtual machines running various OS.

The tools that will be used to analyse the malware presented above are, among others:

-​ Linux Text Editor
-​ Visual Studio Code
-​ readpe[102]
-​ Ghidra
-​ Wireshark
-​ X64dbg
-​ Volatility 3
-​ VirusTotal[103]
-​ Crowdstrike Sandbox
-​ CyberChef[104]
-​ Mockoon[105]

21

Malware Reverse Engineering​ ​ ​ ​ Mavel Christensen

Analysis methods
The methods and techniques to analyse the provided malware will be those described earlier
in the “static analysis” and “dynamic analysis” subsections of this report. More specifically,
“pennicle.txt.ps1” and any additional payload will be analysed using:

-​ Static code analysis
-​ Metadata and (when applicable) PE header analysis
-​ Stored strings
-​ Disassembling and Decompiling

-​ Dynamic code analysis
-​ Debugging
-​ Network analysis
-​ Memory analysis
-​ Sandboxing

Deobfuscation will be performed as necessary and explained along the way.

Conveying findings
Following the analysis of the malware, the student will convey their findings in various ways.
First, they will develop IoCs based on recognizable elements of the malware to ensure
companies can detect it as early on in the cyber kill-chain as possible.

Then, the student will follow FIRST’s recommendation to write an internal report for Trifork
Security, which will summarize their findings and outline ways to disarm the analysed
malware or weaken its impact on infected systems.

Finally, the research in this report and the upcoming case study will be shared on Trifork
Security blog in three articles:

-​ A first one about why one would reverse engineer malware.
-​ A second one about how one would reverse engineer malware.
-​ A third one with the upcoming case study.

22

Malware Reverse Engineering​ ​ ​ ​ Mavel Christensen

Part 3: Analysis
As the malware is two-folds, so will the analysis be. First, the malicious file that was
downloaded by the user will be analysed, followed by the additional payload that was
downloaded by the malware itself.

Both analyses will be done statically then dynamically, following the techniques mentioned
earlier in the theory section of this report.

Analyzing the downloader, “pennicle.txt.ps1”
The malware suspected of being a downloader is analyzed first.

​ Static code analysis
As the downloader has the file extension .ps1, indicating it is a PowerShell script, it can be
opened and analyzed with a simple text editor. Doing so reveals the content below, in figure
7:

Figure 7: content of pennicle.txt.ps1

Reverse engineering this file is very straightforward, as only the variable names have been
obfuscated. It is easy to infer the way this downloader works by stepping line-by-line
through the script:

1.​ First, a variable named dxf is created, containing a url as a string
2.​ Then, a variable named bgn is created. It also contains a string which seems to be a

path to a software named pkg3.zip
3.​ Then, a third variable jvk is created, this time pointing to a folder named

“Extracted3”.
4.​ A fourth variable txl is created and concatenated with jvk, adding the name of a file

to the path in jvk.
5.​ An if statement checks if the path indicated in jvk exists. If it doesn’t, a new directory

with the name “Extracted3” is created.
6.​ The script performs a GET web request[106] to the url specified in dxf. The file

returned by this query is stored at the path indicated in bgn.

23

Malware Reverse Engineering​ ​ ​ ​ Mavel Christensen

7.​ The script, on line 10, adds the .NET class
‘System.IO.Compression.FileSystem’[107] to the current powershell session[108].

8.​ The script then calls the function “ExtractToDirectory”, with bgn as its .zip source and
jvk as its destination.

9.​ The script then does some clean up, line 12, by removing the file stored at the path
referenced in bgn. The “-Force” parameter ensures the file will be removed, even if it
otherwise shouldn’t be able to[109].

10.​ Finally, the script starts the process it has just extracted, located at the path
referenced in txl. The parameter “-WindowStyle Hidden” ensures Windows does not
draw any new window for that process.

Analysing the code statically seems to confirm the malicious text file the user downloaded is
a downloader, used to download additional malicious payloads.

Dynamic Analysis
To ensure the code does not hide any other function, it should be run through a debugger to
watch the process as it unfolds.

However, there is a problem with detonating this malware: the virtual machine is not
connected to the internet and should be kept offline if possible, meaning the downloader
won’t be able to query the hardcoded url and do its intended work.

A compromise can be reached by running the malware through Visual Studio Code’s
debugger with a breakpoint strategically placed on line 6. Although it is expected the
malware will trigger an exception when trying to reach line 8, one can still see if the malware
truly attempts to create a new directory and behaves as expected. If it does, it will be
assumed the rest of the code functions as detailed previously.

Running the code with the breakpoint on line 6 leads, as expected, to the creation of a new
folder named “Extracted3”, as depicted in figure 8 below:

Figure 8: creation of a new folder by the malware.

The malware then triggers a runtime exception line 8, when it unsuccessfully attempts to
access the url specified in the code. This confirms the assumptions stated above, meaning it

24

Malware Reverse Engineering​ ​ ​ ​ Mavel Christensen

is expected that if the malware had had access to the internet, it would have retrieved a
second payload then started it without letting Windows draw any new window.

As TS already has a forensic copy of the malware that is supposed to be retrieved,
downloading the payload again is not mandatory to proceed. This file will now be analysed
statically and dynamically.

Analysing the additional payload, “GetWindowText.exe”
Now that the downloader has been analysed, the focus can move to the additional payload
that was retrieved: “GetWindowText.exe”.

Examining additional files in the .zip
The zip that contained the exe also contained 7 dll files:

-​ libstdc++-6.dll,
-​ libunistring-5.dll,
-​ libzstd.dll,
-​ System.Security.ni.dll,
-​ System.ServiceModel.Internals.ni.dll,
-​ VBoxC.dll
-​ VirtualBoxVM.dll
-​ and vk_swiftshader.dll.

These libraries share the name of official developer libraries from various companies
(Microsoft, Meta, etc).

To verify the genuineness of these files, their SHA-256 hashes were compared with hashes
for the libraries of the same name retrieved from their official developers. The hashes were
identical, meaning it can be safely assumed these dlls are non malicious. They will thus not
be reverse engineered in this report, and it will be assumed they are necessary to the
functions of the “GetWindowText” software.

Investigating the malware’s metadata
Although this step was not mentioned in earlier research, an investigation of the malware’s
metadata will be performed. The reason for this is that the program presents itself as
innocuous despite coming from a malicious source.

The software metadata indicates that the software was supposedly developed by Nenad
Hrg, and referenced the website “SoftwareOK.com”. If one looks this domain up, one will find
that it is a genuine website (despite a dated look), filled with various decade-old tools for
Windows (including the original version of “GetWindowText”). The metadata of the malicious
and original software (or OG) can be compared in figure 9 below:

25

Malware Reverse Engineering​ ​ ​ ​ Mavel Christensen

Figure 9: metadata of the malware and OG version of GetWindowText

Several evidences point towards the fact that the OG software and additional payload are
not one and the same:

-​ They have wildly different sizes (16 Mb VS 98 kb)
-​ As pictured in figure 10 and 11, the OG has a digital signature and a valid certificate

while the malicious version doesn’t.

Figures 10 and 11: digital signature and certificate of OG software

Several additional clues can be found when analysing the software headers and
disassembling the code, but these two signs are enough to state that the malware uses
piggybacking to make itself look genuine and innocuous, meaning the additional payload is
also a trojan.

26

Malware Reverse Engineering​ ​ ​ ​ Mavel Christensen

Analysing the program header
As indicated by the file extension, this payload is in the Portable Executable (.exe) file
format. This means this file contains headers that can be extracted and analyzed to give
initial information about this software. The tool readpe will be used[109] to analyse said
headers.

Imported libraries and functions

The information extracted from the malware headers indicate only one library, Kernel32.dll,
is imported. This library allows software to manipulate memory, files and hardware. The
noteworthy ones are:

-​ VirtualAlloc: A memory-allocation routine that can allocate memory in a remote
process. Malware sometimes uses VirtualAllocEx as part of process injection.

-​ SuspendThread: Suspends a thread so that it stops running. Malware will
sometimes suspend a thread in order to modify it by performing code injection.

-​ ResumeThread: Resumes a previously suspended thread. ResumeThread is used
as part of several injection techniques.

-​ LoadLibraryW, LoadLibraryExW: Loads a DLL into a process that may not have
been loaded when the program started. Imported by nearly every Win32 program.

-​ GetThreadContext: Returns the context structure of a given thread. The context for
a thread stores all the thread information, such as the register values and current
state.

-​ GetProcAddress: Retrieves the address of a function in a DLL loaded into memory.
Used to import functions from other DLLs in addition to the functions imported in the
PE file header.

A first finding of note is the import of the LoadLibrary and GetProcAddress functions. They
allow a program to access any function in any library on the system, meaning that they can
link functions at runtime that are not presented in the PE header. This means a dynamic
analysis will be mandatory to assert the full potential impact of this malware.

Another interesting information in the PE Headers is the value of “Virtual Size” and “Size of
Raw Data”. These two values should usually be equal or very close to each other ; however,
if the virtual size is much larger than the size of the raw data, it is often indicative of packed
code[18]. In this instance, the values are close to equal, indicating the software is likely not
packed.

Analyzing stored strings
As recommended in the research, the analysis of the executable will then look into strings
stored into the malicious software. At first glance, there are close to 34.000 defined strings
with a minimum of 5 characters, making it impossible to analyze them all in depth. However,
one of them immediately looks stands out from the rest with its length of 9344 characters, as
seen in figure 12:

27

Malware Reverse Engineering​ ​ ​ ​ Mavel Christensen

Figure 12: screenshot of some defined strings in the malware, the suspicious one being highlighted

It is unreadable in its current state, though a quick browsing reveals several interesting
elements, such as the word “build” present several places and addresses to github
repositories.

Deobfuscating the suspicious string

Some clean up and deobfuscation is required to make this string readable. Two frequent
symbols in this text are “\n”, which inserts a new line in the text, and “\t”, which inserts a
tabulation.

As showcased in figures 13 and 14, replacing the symbols with their function helps tidy up
the string and find notable elements:

Figures 13 and 14: excerpts from tidied-up string

Decoding the string statically further is a bit challenging, but not impossible. The strings after
each “h1:” section do not seem to be decodable, as running them through decoding and
decrypting tools such as CyberChef[117] does not return any intelligible result.

As the deobfuscated string mentions “Go” several times, it makes sense to look into the
programming language of that name. Go is an open-source programming language
supported by Google which has the reputation of being easy to learn. Researching Google’s
Go documentation with the information found in the decoded elements of that string can
bring clarity to it. As stated in the documentation, Go programs can use modules[118] (also
called dependencies). These dependencies can be listed by using either commands in a
command line tool or by calling a function named “ReadBuildInfo” in the debug class[119].

28

Malware Reverse Engineering​ ​ ​ ​ Mavel Christensen

After looking through the documentation and open-source code, one can state that the
deobfuscated string lists:

-​ On the first line, the path of the main package used to build the executable
-​ On the second line, the module containing the main package. As it is the main

module, it has the version “(devel)”.
-​ All the following lines starting with “dep” list the dependencies used by the compiled

software. A line contains three columns: the dependency URL, version, and
checksum to verify the validity of the dependency.

-​ Finally, the lines starting with “build” are the arguments that were used by the
compiler when it built the malware[113].

The dependencies listed are related to, among other things, Go development[114],
containerization (“containerd”, “docker”), database management (“sq-lite-3”) and file
manipulation (“copy”[115]). One can also find dependencies related to Azure and Google
Cloud (“azure-sdk-for-go”[116], “k8s-cloud-provider”[117]). Interestingly, one of the libraries
retrieved is for a NES emulator[118], another one is for a 2D game engine[119] and yet
another one is for a Telegram[120] bot that automatically sends a Russian meme[121].

Based on these findings, one can safely assume the malware was developed in Go for
Windows machines. The dependencies can be interpreted in different ways: the malware
could be creating services running in the background, using the infected machine’s
resources to perform tasks for the malicious actor, or it could be trying to retrieve information
related to the services stored locally on the infected machine (such as database credentials
or cloud SSH keys).

Several other stored strings are interesting to note. One can find, for example, words that
indicate networking/connection capabilities (“Proxy”, “tconn”, “pings”, conns”, “useTCP”), and
others that may indicate encryption schemes (“isRSA”, “SaltLength”, “crypto/rsa.init”). One
can also find 50 strings containing the word “Mutex”. Although it could indicate the malware
manipulates threads to do process injection, one should be cautious before making this
assumption as using mutexes is pretty standard in Go[122], [123].

Nothing else of particular interest can be found by analysing the stored strings, concluding
this part of the static analysis.

Disassembling and decompiling

The next step in this analysis is to go through the disassembled and decompiled code on
Ghidra, to try to get further insights into the malware.

Several options are available to an analyst to start analysing the software that way. One can,
for example, start by looking at interesting defined strings in their context, to see if anything
notable can be observed. One can also, similarly, look into imported functions in their
context.

29

Malware Reverse Engineering​ ​ ​ ​ Mavel Christensen

However, taking this approach quickly reveals itself to be fruitless. As depicted in figure 15
and 16, all the interesting strings are either associated to “ds” instructions, which means that
an area of storage is reserved for this data without said data being used[124], or Ghidra
cannot find the address in the program memory.

Figure 15 and 16: examples of one’s findings when trying to find context for the string “crypto/rsa”

Looking for references to the reserved areas in the rest of the code (be it the memory
address or the value in bytes) does not lead to any result.

Another approach is to start observing the code from the entry point of the software, which
was automatically detected by Ghidra, and try to get a sense for the flow of the program by
browsing Ghidra’s Function Call Graph. This feature allows one to see the flow of a function,
for example its “if/else” conditions and branches and other functions it will call. Looking at the
function call graph from the entry point of the program, in figure 17, presents a pretty clear
cut flow.

30

Malware Reverse Engineering​ ​ ​ ​ Mavel Christensen

Figure 17: function call graph starting from the “entry” function

31

Malware Reverse Engineering​ ​ ​ ​ Mavel Christensen

However, when comparing the flow with the malware’s full code, one can see said flow only
covers a fraction of the instructions contained in the program.

Looking at other functions, randomly picked throughout the malware, allows one to find a
pattern: the software contains many stand-alone function flows, which are independent from
the “entry” function flow, and which often finish with a “while true” loop (figure 18). These
loops seem to be another one of the malware’s mechanisms to keep itself alive and ready to
react.

Figure 18: example of the malware’s “while true” loops

This finding begs the question of how and when the malware accesses those different flows.
Based on earlier research and findings, one can infer the software uses some sort of
injection to obfuscate its actions and behaviour, which could only be witnessed firsthand with
dynamic analysis.

With this comes the end of the analysis of disassembled and decompiled code, as the
student analysing the malware does not have the necessary knowledge to deepen the
analysis with these specific techniques.

Symbolic Execution
Based on the findings when disassembling and decompiling the malware, it has been
inferred the software uses some sort of injection to obfuscate its behaviour and prevent
static analysis.

As such, one cannot statically go through the code from its start point to its real end point,
making analysing it with symbolic execution an impossible task.

Debugging
Now that static analysis techniques have been used to analyse the malware, one can move
forward with some dynamic analysis. From this step and onward, all analysis is performed
on a Windows-based virtual machine.

The tool used to debug the malware, x32dbg, is designed to pause the debugged software
whenever an exception or breakpoint is reached. Trying to go through the malware manually,
resuming the process whenever said exception or breakpoint is reached, reveals itself to be
a limited endeavour, as the malware quickly enters a seemingly infinite loop between
memory address 77159A11 and 771950BF.

However, important data can still be found. X32dbg automatically keeps track of data it
populates as the debugged software runs and displays it next to relevant disassembled

32

Malware Reverse Engineering​ ​ ​ ​ Mavel Christensen

code. One can clearly see several references to Windows Registers in the code, as pictured
in figures 19, 20 and 21:

Figures 19, 20 and 21: examples of references to Windows Registers in the debugged malware

One can assume those registers are used by the malware to function, either to create
persistence or store data it will need at a later point. For the sake of time, no forensic
analysis of windows registers will be performed, but this would be a lead to follow if one had
to perform said analysis.

Another interesting feature of x32dbg is the possibility to look at the processor registers,
which are memory locations that hold temporary and constantly accessed data[132] and the
changes in it as the malware runs[133]. Doing so reveals a trove of information: as expected
after disassembling/decompiling the code, the malware hides code in memory in the form of
binary data, which x32dbg can convert to meaningful ASCII sequences. This means that,
contrary to what was assumed previously, the malware was packed to prevent forensics
analysis. The unpacked code can be seen, for example, at the memory addresses
00BAA640, which is pictured in figure 22.

Figure 22: example of process injection

33

Malware Reverse Engineering​ ​ ​ ​ Mavel Christensen

However, the unpacked code is still partially obfuscated. By gathering all of those meaningful
strings and performing some manual, rudimentary deobfuscation, one can find that the code
seems to be organised in three different “sections”:

-​ First, a long list of three-characters-long strings, pictured in figure 23. Some of them,
such as “.Dr”, “.Dll” or “.obj” are recognizable as file types. One could infer these files
are targeted or manipulated by the malware while it runs.

-​ Second, a list of functions or data types, pictured in figure 24. These may be a list of
functions used by the malware, either from external libraries or internal code. The list
contains very specific terms, such as “game” and “RGBA” (for Red Green Blue
Alpha[134]), related to gaming and visual displays, or “file”, “copy” and “move”. With
how specific these are, it can be assumed those terms wouldn’t be found in all
compiled go programs.

-​ Third, some code, pictured in figures 25, 26 and 27. Among this code one can find
several references to TLS connections and .xml, .yaml and .json formatting, which
can lead one to assume data is exfiltrated via HTTP requests with an xml, yaml or
json body.

Figure 23: potential file extensions hidden in the malware

Figure 24: functions and data types hidden in the malware

Figures 25, 26 and 27: code hidden in the malware that hints at json and yaml formatting and exfiltration

capabilities

34

Malware Reverse Engineering​ ​ ​ ​ Mavel Christensen

This deobfuscated document of 8,651 lines is too long to be analysed in depth in this report,
but its content will be used to build IoCs tailored to this malware.

This discovery, along with the inability to leave the loop the malware stepped into, marks the
end of the debugging phase of this malware analysis.

Network Analysis
As this malware was downloaded as an additional payload by a downloader, a logical
element to analyse dynamically is the infected machine’s network. This will allow the analyst
to see if the malware retrieves yet another payload from a malicious website. Using
wireshark, one can analyse inbound and outbound network packets and try to find additional
IoCs.

To perform the analysis, a secured windows based Virtual Machine is set-up. Wireshark is
installed and the machine is modified to limit its virtual network to itself, despite relying on
the physical network card in the host computer[135]. The malware is then detonated on the
virtual machine while Wireshark monitors the network.

Once the malware is detonated, the process “GetWindowText.exe” appears in the task
manager but no window appears. After a while, the process exits and suspicious HTTP
requests appear on Wireshark, as pictured in figure 28.

Figure 28: Suspicious queries recorded by Wireshark

Those requests try to query several websites:

-​ pittyshishre(.)site
-​ famikyjdiag(.)site
-​ possiwreeste(.)site
-​ commandejorsk(.)site
-​ underlinemdsj(.)site
-​ bellykmrebk(.)site
-​ agentyanlark(.)site
-​ writekdmsnu(.)site
-​ delaylacedmn(.)site

35

Malware Reverse Engineering​ ​ ​ ​ Mavel Christensen

-​ And finally, steamcommunity(.)com.

As shown in figures 29 and 30, looking up the two URLs from this list on VirusTotal shows
that they have been flagged as malicious by several reliable vendors such as Fortinet[129]
and BitDefender[130].

Figures 29 and 30: VirusTotal analysis results for the malicious URLs

VirusTotal returns similar results for the other URLs, except for steamcommunity(.)com. This
last URL is for a legitimate website on which players can talk about video games available
via the Steam platform. As it is not possible to see what the malware’s request to
steamcommunity(.)com would be, one can only make hypothesis as to why the malware
queries such website:

-​ One could assume it is an anti-forensics technique, to check if the malware runs in a
sandboxed environment. However, this seems unlikely, as one would expect this kind
of anti-forensics technique to be used as early on in the process as possible.

-​ It could also be a way for the malware to hide its queries to malicious websites. By
performing an additional query to a legitimate website, it could try to make the other
queries appear as more legitimate. This also seems unlikely, as querying a single
legitimate website after trying to access 9 malicious domains is disproportionate.

-​ The last hypothesis one can make is that the website steamcommunity(.)com is
somehow part of the Command and Control process used by the malicious actors
behind that malware. As it stands, it is impossible to investigate this hypothesis
further.

This network analysis is not over yet. Even if the virtual machine used for analysis is
disconnected from the internet, it is possible to trick the malware into thinking it has
connected to the domain it tried to query. The process is a bit convoluted:

-​ First, one has to create a mock API accessible via a specific port on localhost. In this
case, the mock API was created using Mockoon and made available on port 443.

36

Malware Reverse Engineering​ ​ ​ ​ Mavel Christensen

-​ Second, one has to modify Windows’ host file to force the system to redirect
connections to any of the aforementioned malicious domains to a random, unused
loopback address (127.65.43.21 in this case).

-​ Third, one has to do a port redirection using the command line tool netsh, which will
listen to connections from 127.65.43.21:443 and redirect them to 127.0.0.1.

-​ Fourth, one has to create a self-signed certificate valid for all malicious domains
listed earlier in this report, which is done by adding said domains as “Subject
Alternative Name” in the certificate, and make the mock API use it.

-​ Finally, one has to install the same certificate in the virtual machine’s “Trusted Root
Certification Authorities” Certificate Store.

Once all of those steps are completed, one can connect to the mock API without triggering
TLS certificate errors that will lead the malware to end the connection prematurely.

After running the malware, one can look into Mockoon’s logs to see the calls that have been
made to the API and see the malware’s attempt at communicating with its C2 domains, as
pictured in figure 31 below:

Figure 31: logs from the mock API

The malware was very straightforward: once it connected successfully to what it believes is
the C2 domain, it sent a POST request with the body “act=life”. This is clearly a form
parameter key/value pair, its key potentially standing for “action”, which sends a beacon to
the malicious domain to report the infection of a new device. Sending the same message to

37

Malware Reverse Engineering​ ​ ​ ​ Mavel Christensen

nine different C2 domains increases the likelihood that the malicious actors controlling the
malware will receive the message and continue the attack manually.

This discovery puts an end to this network analysis.

Memory analysis
Another technique in dynamic analysis is memory forensics, where the memory of an
infected machine is analysed and potentially compared with its earlier clean state, if
available.

As virtual machines are used for this analysis and regularly snapshotted, it is possible to
compare the state of the machine pre and post contamination.

Immediately, one can notice a lot of services were started after detonating the malware.
Those of note are:

-​ 4 instances of msedge.exe, which is Microsoft Edge, a web browser.
-​ One instance of TrustedInstaller.exe, which is part of Windows Resource

Protection and can modify core system files, folders and registry keys.[131]
-​ One instance of smartscreen.exe, which is part of Microsoft Defender

SmartScreen and protects against malware[132].
-​ One instance of AddInProcess.exe and AddInProcess32.exe which are

used to manage add-ins within Microsoft Office applications[133].

Although most of these processes’ parent processes seem to be legitimate Windows
processes, some of them stem from terminated processes that do not appear on the list.

One can then use a volatility plugin called malfind, which lists processes that potentially
contain injected code, based among other things on the content of their PE header and the
processes’ permissions. The plugin marks smartscreen.exe and AddInProcess32.exe as
suspicious.

As pictured in figure 32, extracting the process AddInProcess32.exe and submitting it for
analysis on VirusTotal reveals that 18 reliable vendors (including Microsoft, which
supposedly created this file) flagged this file as malicious.

Figure 32: screenshot of an analysis of the suspected malware performed by VirusTotal.

However, VirusTotal does not reveal any negative analysis of smartscreen.exe, meaning this
process has not been flagged as suspicious by any security vendor collaborating with said

38

Malware Reverse Engineering​ ​ ​ ​ Mavel Christensen

website. The findings related to AddInProcess32.exe are still enough to confirm the idea that
the malware relies on process injection to bypass security features.

Based on the clues found during this memory dump, one could look into registry forensics for
changes that would help the malware persist, but this technique will not be explored for the
sake of time.

Conveying findings
Now that the analysis has reached its end, one can convey and formalize the findings via
IoCs and an analysis report.

IoCs
Several IoCs can be extracted from the results of the analysis and are listed in table 1 below.

IoC Type IoC SHA-256 Hash

Domain storageinstance(.)oss-ap-sout
heast-1(.)aliyuncs(.)com

/

Domain pittyshishre(.)site /

Domain famikyjdiag(.)site /

Domain possiwreeste(.)site /

Domain commandejorsk(.)site /

Domain underlinemdsj(.)site /

Domain bellykmrebk(.)site /

Domain agentyanlark(.)site /

Domain writekdmsnu(.)site /

Domain delaylacedmn(.)site /

File pennicle.txt.ps1 b0879918c9bcb34665ea7471f7ce87c6
ed49a032f364ccd2ae279886a2bbd96e

File GetWindowText.exe 92404a009eff4b32a0370d5e590d857b
a83b031478aa74e6f6767460c5372830

File GetWindowText.zip 6c88649830495d542a0f58cdeca983c1
5de71358d8bab0a7ecb3bf6c0e01d5f7

Table 1: various IoCs from the analysed malwares

One of the YARA rules developed from the analysis findings can be examined below. It is
specifically designed to detect pennicle.txt.ps1.

39

Malware Reverse Engineering​ ​ ​ ​ Mavel Christensen

/*
 YARA Rule Set
 Author: EMC for Trifork Security
 Date: 2024-12-18
 Description: Detection of pennicle.txt.ps1 malware
 Reference: Internal Analysis of pennicle.txt.ps1
*/

rule PennicleDetection {
 meta:
 description = "Detection rule for pennicle.txt.ps1 malware"
 author = "BEMC for Trifork Security"
 reference = "Internal Malware Analysis Report"
 date = "2024-12-18"
 hash1 = "b0879918c9bcb34665ea7471f7ce87c6ed49a032f364ccd2ae279886a2bbd96e"
// SHA-256 hash of pennicle.txt.ps1

 strings:
 $s1 = "if (!(Test-Path $jvk)) { New-Item -Path $jvk -ItemType Directory }"
fullword ascii
 $s2 = "[IO.Compression.ZipFile]::ExtractToDirectiory($bgn, $jvk)" fullword
ascii
 $s3 =
"https://storageinstance.oss-ap-southeast-1.aliyuncs.com/link/process/GetWindowT
ext.zip" fullword ascii

 condition:
 filesize < 3000KB and
 2 of them
}

Analysis report

The report of the analysis detailed in the current document is not publicly available.

Blog posts
The content of this report and the case study was rephrased and published on TS’ blog as a
three parter, under the overall title “Malware Reverse Engineering: Through the
Looking-glass (and what Analysts Found There)”. At the time of submission, only two of the
three articles have been published:

-​ Part. I on January the 9th, which explains why one would reverse engineer malware.
-​ Part II on January the 16th, which explains how one reverse engineers malware.

The third and final part, which presents highlights of the case study in this report, will be
published on January the 23rd.

All the articles reused the sources and content found in this report, but watered down to
allow anyone without a technical background to read them.

40

Malware Reverse Engineering​ ​ ​ ​ Mavel Christensen

Conclusion
This report has explored in theory and practice the questions found in the problem
statement, based on the research found on reverse engineering and malware analysis. The
application of the research was based on Trifork Security’s domain to see if the theoretical
knowledge could be applied to a real-world situation in a commercial context.

Various techniques were listed to explore how one can reverse engineer malware, along with
the caveats one should keep in mind when applying said techniques to malware reverse
engineering. It was discovered that malware reverse engineering could help improve a
company’s security posture by finding concrete elements in the malware that can be
measured, such as IP addresses and vulnerability exploitation discovery. Those findings
could be converted into practical recommendations, for example via the writing and
spreading of reports about the malware and the creation of YARA rules to ensure the
malware can be detected by automated systems.

The learnings from this research were applied to the analysis of a malware Trifork Security
recently encountered, leading to several findings that were then converted to actionable
security recommendations.

The research done for this project was very informative, bringing the student behind the
project numerous teachings that were cemented by their application in the project’s practical
malware analysis.

The process behind the writing of this report went according to plan, such as the research
and applications of said research to answer the problem statement.

41

Malware Reverse Engineering​ ​ ​ ​ Mavel Christensen

Bibliography
[1]​ Department of Computer Science, Virtual University of Pakistan and R. Tahir, ‘A Study

on Malware and Malware Detection Techniques’, Int. J. Educ. Manag. Eng., vol. 8, no.
2, pp. 20–30, Mar. 2018, doi: 10.5815/ijeme.2018.02.03.

[2]​ ‘Malware’, Wikipedia. Nov. 02, 2024. Accessed: Nov. 05, 2024. [Online]. Available:
https://en.wikipedia.org/w/index.php?title=Malware&oldid=1254984759

[3]​ ‘12 Types of Malware + Examples That You Should Know | CrowdStrike’,
CrowdStrike.com. Accessed: Nov. 15, 2024. [Online]. Available:
https://www.crowdstrike.com/en-us/cybersecurity-101/malware/types-of-malware/

[4]​ Cofense, ‘Ransomware in 2024: Top 5 Delivery Methods and Threats to Know’,
Cofense. Accessed: Nov. 15, 2024. [Online]. Available:
https://cofense.com/blog/ransomware-in-2024-top-5-delivery-methods-and-threats-to-
know

[5]​ ‘Theory of Self-Reproducing Automata’. Accessed: Nov. 05, 2024. [Online]. Available:
https://cba.mit.edu/events/03.11.ASE/docs/VonNeumann.pdf

[6]​ ‘The History of Malware | IBM’. Accessed: Nov. 05, 2024. [Online]. Available:
https://www.ibm.com/think/topics/malware-history

[7]​ ‘Stuxnet’, Wikipedia. Nov. 04, 2024. Accessed: Nov. 06, 2024. [Online]. Available:
https://en.wikipedia.org/w/index.php?title=Stuxnet&oldid=1255323076

[8]​ ‘Global Threat Report 2024 - Executive Summary - 28-10-2024.pdf’, Google Docs.
Accessed: Nov. 06, 2024. [Online]. Available:
https://drive.google.com/file/d/1beEjQGiWFd3L0xxiqLC2JhNOAg9vnRq4/view?usp=dr
ive_open&edoph=true&usp=embed_facebook

[9]​ J. Coker, ‘Malware-as-a-Service Now the Top Threat to Organizations’, Infosecurity
Magazine. Accessed: Nov. 06, 2024. [Online]. Available:
https://www.infosecurity-magazine.com/news/malware-service-top-threat/

[10]​ ‘The CrowdStrike Falcon® platform’, crowdstrike.com. Accessed: Nov. 06, 2024.
[Online]. Available: https://www.crowdstrike.com/platform/

[11]​ D. Badampudi, C. Wohlin, and K. Petersen, ‘Experiences from using snowballing and
database searches in systematic literature studies’, in Proceedings of the 19th
International Conference on Evaluation and Assessment in Software Engineering, in
EASE ’15. New York, NY, USA: Association for Computing Machinery, Apr. 2015, pp.
1–10. doi: 10.1145/2745802.2745818.

[12]​ ‘ScienceDirect.com | Science, health and medical journals, full text articles and
books.’ Accessed: Nov. 22, 2024. [Online]. Available: https://www.sciencedirect.com/

[13]​ ‘EdTech Books’. Accessed: Nov. 22, 2024. [Online]. Available:
https://edtechbooks.org/studentguide/design-based_research

[14]​ ‘What is Reverse-engineering? How Does It Work?’, Search Software Quality.
Accessed: Nov. 06, 2024. [Online]. Available:
https://www.techtarget.com/searchsoftwarequality/definition/reverse-engineering

[15]​ H. Eckerman, Mastering Ghidra: A Comprehensive Guide to Reverse Engineering.
[16]​ ‘What Is Software? | Definition from TechTarget’, Search App Architecture. Accessed:

Nov. 08, 2024. [Online]. Available:
https://www.techtarget.com/searchapparchitecture/definition/software

[17]​ ‘Executable file: What is an Executable File in computing? | Lenovo US’. Accessed:
Nov. 08, 2024. [Online]. Available:
https://www.lenovo.com/us/en/glossary/executable-file/

[18]​ ‘Practical Malware Analysis: The Hands-On Guide to Dissecting Malicious Software:
Sikorski, Michael, Honig, Andrew: 8601400885581: Amazon.com: Books’. Accessed:
Nov. 08, 2024. [Online]. Available:
https://www.amazon.com/Practical-Malware-Analysis-Hands-Dissecting/dp/15932729
01/ref=pd_rhf_ee_s_pd_sbs_rvi_d_sccl_1_3/131-2713907-8262453?pd_rd_w=i5gGO
&content-id=amzn1.sym.46e2be74-be72-4d3f-86e1-1de279690c4e&pf_rd_p=46e2be

42

Malware Reverse Engineering​ ​ ​ ​ Mavel Christensen

74-be72-4d3f-86e1-1de279690c4e&pf_rd_r=JXXFTAADPVB78E5K702F&pd_rd_wg=
ycGc0&pd_rd_r=2a693ef3-ed13-4a22-a2db-af3ea6fbb27f&pd_rd_i=1593272901&psc
=1

[19]​ ‘pwn.college’. Accessed: Nov. 08, 2024. [Online]. Available:
https://pwn.college/intro-to-cybersecurity/reverse-engineering/

[20]​ S. Sengupta, ‘Reverse Engineering Malware: Techniques And Tools For Analyzing
And Dissecting Malicious Software’, Medium. Accessed: Nov. 13, 2024. [Online].
Available:
https://sudip-says-hi.medium.com/reverse-engineering-malware-techniques-and-tools-
for-analyzing-and-dissecting-malicious-software-4dd5949135f0

[21]​ markruss, ‘Strings - Sysinternals’. Accessed: Nov. 08, 2024. [Online]. Available:
https://learn.microsoft.com/en-us/sysinternals/downloads/strings

[22]​ ‘WJR Software - PEview (PE/COFF file viewer),...’ Accessed: Dec. 13, 2024. [Online].
Available: http://wjradburn.com/software/

[23]​ ‘Winitor’. Accessed: Dec. 13, 2024. [Online]. Available:
https://www.winitor.com/download

[24]​ ‘Is Java Interpreted or Compiled - Javatpoint’, www.javatpoint.com. Accessed: Dec.
02, 2024. [Online]. Available:
https://www.javatpoint.com/is-java-interpreted-or-compiled

[25]​ S. Gaurav, ‘Difference between Interpreted and Compiled Language’, Scaler Topics.
Accessed: Dec. 02, 2024. [Online]. Available:
https://www.scaler.com/topics/interpreted-vs-compiled-language/

[26]​ ‘What is the difference between a compiled and interpreted programming language? |
LinkedIn’. Accessed: Dec. 02, 2024. [Online]. Available:
https://www.linkedin.com/pulse/what-difference-between-compiled-interpreted-progra
mming-language/

[27]​ ‘Interpreted vs Compiled Programming Languages: What’s the Difference?’,
freeCodeCamp.org. Accessed: Dec. 02, 2024. [Online]. Available:
https://www.freecodecamp.org/news/compiled-versus-interpreted-languages/

[28]​ ‘IDA Pro’. Accessed: Dec. 13, 2024. [Online]. Available: https://hex-rays.com/ida-pro
[29]​ ‘Ghidra’. Accessed: Nov. 20, 2024. [Online]. Available: https://ghidra-sre.org/
[30]​ ‘What is decompile?’, WhatIs. Accessed: Nov. 11, 2024. [Online]. Available:

https://www.techtarget.com/whatis/definition/decompile
[31]​ P. N. F. Software, ‘What is decompilation?’, Medium. Accessed: Nov. 11, 2024.

[Online]. Available:
https://medium.com/@pnfsoftware/what-is-decompilation-26ce48f282bc

[32]​ C. Thiede, ‘Symbolic Execution and Applications’.
[33]​ ‘About this class | Introduction | Reverse Engineering 3201: Symbolic Analysis |

OpenSecurityTraining2’. Accessed: Nov. 14, 2024. [Online]. Available:
https://apps.p.ost2.fyi/learning/course/course-v1:OpenSecurityTraining2+RE3201_sy
mexec+2021_V1/block-v1:OpenSecurityTraining2+RE3201_symexec+2021_V1+type
@sequential+block@49a49d1795634800a04e6f319407bf03/block-v1:OpenSecurityTr
aining2+RE3201_symexec+2021_V1+type@vertical+block@28badad322e24196923
d01b2b2c8fc24

[34]​ ‘angr’. Accessed: Dec. 13, 2024. [Online]. Available: https://angr.io/
[35]​ ‘Wireshark · Go Deep’, Wireshark. Accessed: Nov. 11, 2024. [Online]. Available:

http://localhost:4321/
[36]​ ‘Debuggers’, IONOS Digital Guide. Accessed: Nov. 11, 2024. [Online]. Available:

https://www.ionos.com/digitalguide/websites/web-development/debugger/
[37]​ ‘What is debugging?’, Search Software Quality. Accessed: Nov. 11, 2024. [Online].

Available: https://www.techtarget.com/searchsoftwarequality/definition/debugging
[38]​ Mikejo5000, ‘Debugging techniques and tools - Visual Studio (Windows)’. Accessed:

Nov. 11, 2024. [Online]. Available:
https://learn.microsoft.com/en-us/visualstudio/debugger/write-better-code-with-visual-s
tudio?view=vs-2022

43

Malware Reverse Engineering​ ​ ​ ​ Mavel Christensen

[39]​ jeFF0Falltrades, Reverse Engineering and Weaponizing XP Solitaire (Mini-Course),
(Nov. 26, 2022). Accessed: Nov. 11, 2024. [Online Video]. Available:
https://www.youtube.com/watch?v=ZmPArvsSii4

[40]​ ‘x64dbg’. Accessed: Dec. 13, 2024. [Online]. Available: https://x64dbg.com/
[41]​ ‘The Volatility Foundation - Promoting Accessible Memory Analysis Tools Within the

Memory Forensics Community’, The Volatility Foundation - Promoting Accessible
Memory Analysis Tools Within the Memory Forensics Community. Accessed: Nov. 13,
2024. [Online]. Available: https://volatilityfoundation.org/

[42]​ ‘Cuckoo Sandbox - Automated Malware Analysis’, Cuckoo Sandbox - Automated
Malware Analysis. Accessed: Nov. 13, 2024. [Online]. Available:
https://cuckoosandbox.org/

[43]​ ‘Interactive Online Malware Analysis Sandbox - ANY.RUN’. Accessed: Nov. 13, 2024.
[Online]. Available: https://app.any.run/

[44]​ ‘Malware Analysis is for the (Cuckoo) Birds’, TrustedSec. Accessed: Nov. 14, 2024.
[Online]. Available: https://trustedsec.com/blog/malware-cuckoo-1

[45]​ Avira, ‘Cuckoo Sandbox vs. Reality’, Avira Blog. Accessed: Nov. 14, 2024. [Online].
Available: https://www.avira.com/en/blog/cuckoo-sandbox-vs-reality-2

[46]​ ‘What Is Reverse Engineering in Cyber Security? [2024 Guide]’. Accessed: Nov. 06,
2024. [Online]. Available:
https://www.stationx.net/what-is-reverse-engineering-in-cyber-security/

[47]​ ‘What is Reverse Engineering Technique in Cybersecurity?’, GeeksforGeeks.
Accessed: Nov. 06, 2024. [Online]. Available:
https://www.geeksforgeeks.org/what-is-reverse-engineering-technique-in-cybersecurit
y/

[48]​ Praveen, ‘A Quick Guide to Reverse Engineering Malware’, Cybersecurity Exchange.
Accessed: Nov. 11, 2024. [Online]. Available:
https://www.eccouncil.org/cybersecurity-exchange/ethical-hacking/malware-reverse-e
ngineering/

[49]​ R. Yu, ‘GINMASTER: A CASE STUDY IN ANDROID MALWARE’.
[50]​ ‘Creeper & Reaper’. Accessed: Nov. 19, 2024. [Online]. Available:

https://corewar.co.uk/creeper.htm
[51]​ ‘Lateral Tool Transfer, Technique T1570 - Enterprise | MITRE ATT&CK®’. Accessed:

Nov. 19, 2024. [Online]. Available: https://attack.mitre.org/techniques/T1570/
[52]​ ‘Exploitation of Remote Services, Technique T0866 - ICS | MITRE ATT&CK®’.

Accessed: Nov. 19, 2024. [Online]. Available:
https://attack.mitre.org/techniques/T0866/

[53]​ ‘System Network Configuration Discovery, Technique T1016 - Enterprise | MITRE
ATT&CK®’. Accessed: Nov. 19, 2024. [Online]. Available:
https://attack.mitre.org/techniques/T1016/

[54]​ A. Wolf, ‘Most Common Malware Attacks’, Arctic Wolf. Accessed: Nov. 19, 2024.
[Online]. Available: https://arcticwolf.com/resources/blog/8-types-of-malware/

[55]​ ‘12 Common Types of Malware Attacks and How to Prevent Them’, Search Security.
Accessed: Nov. 19, 2024. [Online]. Available:
https://www.techtarget.com/searchsecurity/tip/10-common-types-of-malware-attacks-a
nd-how-to-prevent-them

[56]​ ‘What is Malware? Malware Definition, Types and Protection’, Malwarebytes.
Accessed: Nov. 19, 2024. [Online]. Available: https://www.malwarebytes.com/malware

[57]​ ‘What Is Malware? - Definition and Examples’, Cisco. Accessed: Nov. 19, 2024.
[Online]. Available:
https://www.cisco.com/site/us/en/learn/topics/security/what-is-malware.html

[58]​ K. Zetter, Countdown to Zero Day: Stuxnet and the Launch of the World’s First Digital
Weapon, Reprint edition. New York: Crown, 2015.

[59]​ ‘Lumma Stealer (Malware Family)’. Accessed: Nov. 19, 2024. [Online]. Available:
https://malpedia.caad.fkie.fraunhofer.de/details/win.lumma

[60]​ B. Blunden, Rootkit Arsenal: Escape and Evasion in the Dark Corners of the System.

44

Malware Reverse Engineering​ ​ ​ ​ Mavel Christensen

Jones & Bartlett Publishers, 2013.
[61]​ J. Tanner, ‘Malware 101: Additional payloads’, Barrcuda Blog. Accessed: Nov. 19,

2024. [Online]. Available:
https://blog.barracuda.com/2023/11/02/malware-101-additional-payloads

[62]​ ‘FAQ | MITRE ATT&CK®’. Accessed: Nov. 19, 2024. [Online]. Available:
https://attack.mitre.org/resources/faq/

[63]​ ‘Obfuscated Files or Information: Embedded Payloads, Sub-technique T1027.009 -
Enterprise | MITRE ATT&CK®’. Accessed: Nov. 19, 2024. [Online]. Available:
https://attack.mitre.org/techniques/T1027/009/

[64]​ ‘Indicators of compromise (IOCs): how we collect and use them’. Accessed: Nov. 19,
2024. [Online]. Available:
https://securelist.com/how-to-collect-and-use-indicators-of-compromise/108184/

[65]​ Mossé Cyber Security Institute, Common IOCs to retrieve from malware reverse
engineering, (Apr. 24, 2023). Accessed: Nov. 19, 2024. [Online Video]. Available:
https://www.youtube.com/watch?v=vV8q7IvwoHs

[66]​ M. Patrol, ‘Malware Hashes and Hash Functions’, Malware Patrol. Accessed: Nov. 25,
2024. [Online]. Available:
https://www.malwarepatrol.net/malware-hashes-and-hash-functions/

[67]​ N. H. S. England, ‘NHS England » NHS England business continuity management
toolkit case study: WannaCry attack’. Accessed: Nov. 12, 2024. [Online]. Available:
https://www.england.nhs.uk/long-read/case-study-wannacry-attack/

[68]​ ‘What Is WannaCry Ransomware’, Akamai. Accessed: Nov. 12, 2024. [Online].
Available: https://www.akamai.com/glossary/what-is-wannacry-ransomware

[69]​ M. Hutchins, ‘How to Accidentally Stop a Global Cyber Attacks – MalwareTech’.
Accessed: Nov. 12, 2024. [Online]. Available:
https://malwaretech.com/2017/05/how-to-accidentally-stop-a-global-cyber-attacks.html

[70]​ ‘WannaCry – Darknet Diaries’. Accessed: Nov. 12, 2024. [Online]. Available:
https://darknetdiaries.com/transcript/73/

[71]​ ‘What Is Qakbot?’ Accessed: Nov. 12, 2024. [Online]. Available:
https://www.blackberry.com/us/en/solutions/endpoint-security/ransomware-protection/
qakbot

[72]​ ‘Qakbot Malware Takedown and Defending Forward | Huntress’. Accessed: Nov. 12,
2024. [Online]. Available:
https://www.huntress.com/blog/qakbot-malware-takedown-and-defending-forward

[73]​ ‘Office of Public Affairs | Qakbot Malware Disrupted in International Cyber Takedown |
United States Department of Justice’. Accessed: Nov. 12, 2024. [Online]. Available:
https://www.justice.gov/opa/pr/qakbot-malware-disrupted-international-cyber-takedow
n

[74]​ ‘MITRE ATT&CK®’. Accessed: Nov. 14, 2024. [Online]. Available:
https://attack.mitre.org/

[75]​ ‘Masquerading, Technique T1036 - Enterprise | MITRE ATT&CK®’. Accessed: Nov.
27, 2024. [Online]. Available: https://attack.mitre.org/techniques/T1036/

[76]​ ‘Masquerading: Invalid Code Signature, Sub-technique T1036.001 - Enterprise |
MITRE ATT&CK®’. Accessed: Nov. 27, 2024. [Online]. Available:
https://attack.mitre.org/techniques/T1036/001/

[77]​ ‘Masquerading: Double File Extension, Sub-technique T1036.007 - Enterprise |
MITRE ATT&CK®’. Accessed: Nov. 27, 2024. [Online]. Available:
https://attack.mitre.org/techniques/T1036/007/

[78]​ ‘An Example of Common String and Payload Obfuscation Techniques in Malware’,
Security Intelligence. Accessed: Nov. 13, 2024. [Online]. Available:
https://securityintelligence.com/an-example-of-common-string-and-payload-obfuscatio
n-techniques-in-malware/securityintelligence.com/an-example-of-common-string-and-
payload-obfuscation-techniques-in-malware

[79]​ ‘Process Injection, Technique T1055 - Enterprise | MITRE ATT&CK®’. Accessed: Nov.
27, 2024. [Online]. Available: https://attack.mitre.org/techniques/T1055/

45

Malware Reverse Engineering​ ​ ​ ​ Mavel Christensen

[80]​ ‘Obfuscated Files or Information, Technique T1027 - Enterprise | MITRE ATT&CK®’.
Accessed: Nov. 14, 2024. [Online]. Available:
https://attack.mitre.org/techniques/T1027/

[81]​ ‘API Obfuscation - Unprotect Project’. Accessed: Nov. 14, 2024. [Online]. Available:
https://unprotect.it/technique/api-obfuscation/

[82]​ P. Black, I. Gondal, and R. Layton, ‘A survey of similarities in banking malware
behaviours’, Comput. Secur., vol. 77, pp. 756–772, Aug. 2018, doi:
10.1016/j.cose.2017.09.013.

[83]​ ‘What is Polymorphic Malware? Examples & Challenges’, SentinelOne. Accessed:
Nov. 14, 2024. [Online]. Available:
https://www.sentinelone.com/cybersecurity-101/threat-intelligence/what-is-polymorphic
-malware/

[84]​ ‘What is a Polymorphic Virus? Examples & More | CrowdStrike’, CrowdStrike.com.
Accessed: Nov. 14, 2024. [Online]. Available:
https://www.crowdstrike.com/en-us/cybersecurity-101/malware/polymorphic-virus/

[85]​ ‘Understanding Evil: How to Reverse Engineer Malware | Huntress’. Accessed: Nov.
14, 2024. [Online]. Available:
https://www.huntress.com/blog/understanding-evil-how-to-reverse-engineer-malware

[86]​ ‘Obfuscated Files or Information: Software Packing, Sub-technique T1027.002 -
Enterprise | MITRE ATT&CK®’. Accessed: Nov. 14, 2024. [Online]. Available:
https://attack.mitre.org/techniques/T1027/002/

[87]​ A. Balci and D. Ungureanu, ‘Malware Reverse Engineering Handbook’.
[88]​ J. Cannell, ‘Obfuscation: Malware’s best friend | Malwarebytes Labs’, Malwarebytes.

Accessed: Nov. 13, 2024. [Online]. Available:
https://www.malwarebytes.com/blog/news/2013/03/obfuscation-malwares-best-friend/

[89]​ ‘Exeinfo PE - Website Title’. Accessed: Nov. 13, 2024. [Online]. Available:
https://www.facebook.com/Exeinfo-Pe-157540614382356/

[90]​ ‘PEiD - aldeid’. Accessed: Nov. 13, 2024. [Online]. Available:
https://www.aldeid.com/wiki/PEiD

[91]​ G. Johansen, Digital forensics and incident response: incident response techniques
and procedures to respond to modern cyber threats, Second edition. Birmingham,
England ; Packt, 2020.

[92]​ N. Bencherchali, ‘Extracting Indicators of Compromise (IOCs) From Malware Using
Basic Static Analysis’, Medium. Accessed: Nov. 19, 2024. [Online]. Available:
https://nasbench.medium.com/extracting-indicators-of-compromise-iocs-from-malware
-using-basic-static-analysis-4b01e0be8659

[93]​ ‘Indicators of Compromise (IOCs)’, Fortinet. Accessed: Nov. 19, 2024. [Online].
Available: https://www.fortinet.com/resources/cyberglossary/indicators-of-compromise

[94]​ ‘YARA - The pattern matching swiss knife for malware researchers’. Accessed: Nov.
21, 2024. [Online]. Available: https://virustotal.github.io/yara/

[95]​ ‘Malware Analysis Framework v2.0’, FIRST — Forum of Incident Response and
Security Teams. Accessed: Nov. 14, 2024. [Online]. Available:
https://www.first.org/global/sigs/malware/ma-framework/

[96]​ ‘About FIRST’, FIRST — Forum of Incident Response and Security Teams. Accessed:
Nov. 14, 2024. [Online]. Available: https://www.first.org/about/

[97]​ G. P. Zero, ‘Simple macOS kernel extension fuzzing in userspace with IDA and
TinyInst’, Project Zero. Accessed: Dec. 11, 2024. [Online]. Available:
https://googleprojectzero.blogspot.com/

[98]​ ‘Huntress Blog | Huntress’. Accessed: Dec. 11, 2024. [Online]. Available:
https://www.huntress.com/blog

[99]​ (@SarlackLab@ioc.exchange) SarlackLab, ‘#njrat #C2 servers3.121.139[.]82:16948,
18.198.77[.]177:16948, 35.158.159[.]254:16948confirmed 2024-12-11’, Mastodon.
Accessed: Dec. 11, 2024. [Online]. Available:
https://ioc.exchange/@SarlackLab/113632902694519177

[100]​ deAlex [@AlexSmirnov__], ‘1/ @deBridgeFinance has been the subject of an

46

Malware Reverse Engineering​ ​ ​ ​ Mavel Christensen

attempted cyberattack, apparently by the Lazarus group. PSA for all teams in Web3,
this campaign is likely widespread. https://t.co/P5bxY46O6m’, Twitter. Accessed: Dec.
11, 2024. [Online]. Available:
https://x.com/AlexSmirnov__/status/1555586334378676225

[101]​ Archiveddocs, ‘GetWindowText (Windows CE 5.0)’. Accessed: Nov. 26, 2024.
[Online]. Available:
https://learn.microsoft.com/en-us/previous-versions/windows/embedded/aa453183(v=
msdn.10)

[102]​ ‘Ubuntu Manpage: readpe - displays information about PE files’. Accessed: Nov. 27,
2024. [Online]. Available:
https://manpages.ubuntu.com/manpages/focal/man1/readpe.1.html

[103]​ ‘VirusTotal - Home’. Accessed: Dec. 13, 2024. [Online]. Available:
https://www.virustotal.com/gui/home/upload

[104]​ ‘CyberChef’. Accessed: Dec. 13, 2024. [Online]. Available:
https://gchq.github.io/CyberChef/

[105]​ ‘Mockoon - Create mock APIs in seconds with Mockoon’. Accessed: Jan. 07, 2025.
[Online]. Available: https://mockoon.com

[106]​ sdwheeler, ‘Invoke-WebRequest (Microsoft.PowerShell.Utility) - PowerShell’.
Accessed: Nov. 26, 2024. [Online]. Available:
https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.utility/invok
e-webrequest?view=powershell-7.4

[107]​ dotnet-bot, ‘ZipArchive Class (System.IO.Compression)’. Accessed: Nov. 26, 2024.
[Online]. Available:
https://learn.microsoft.com/en-us/dotnet/api/system.io.compression.ziparchive?view=n
et-9.0

[108]​ sdwheeler, ‘Add-Type (Microsoft.PowerShell.Utility) - PowerShell’. Accessed: Nov. 26,
2024. [Online]. Available:
https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.utility/add-ty
pe?view=powershell-7.4

[109]​ sdwheeler, ‘Remove-Item (Microsoft.PowerShell.Management) - PowerShell’.
Accessed: Nov. 26, 2024. [Online]. Available:
https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.manageme
nt/remove-item?view=powershell-7.4

[110]​ gchq/CyberChef. (Dec. 02, 2024). JavaScript. GCHQ. Accessed: Dec. 02, 2024.
[Online]. Available: https://github.com/gchq/CyberChef

[111]​ ‘Go Modules Reference - The Go Programming Language’. Accessed: Jan. 02, 2025.
[Online]. Available: https://go.dev/ref/mod

[112]​ ‘mod.go - Go’. Accessed: Jan. 02, 2025. [Online]. Available:
https://cs.opensource.google/go/go/+/refs/tags/go1.23.4:src/runtime/debug/mod.go;l=
20

[113]​ ‘go command - cmd/go - Go Packages’. Accessed: Jan. 02, 2025. [Online]. Available:
https://pkg.go.dev/cmd/go

[114]​ ‘The Go Programming Language’. Accessed: Dec. 02, 2024. [Online]. Available:
https://go.dev/

[115]​ H. OCHIAI, otiai10/copy. (Dec. 01, 2024). Go. Accessed: Dec. 02, 2024. [Online].
Available: https://github.com/otiai10/copy

[116]​ Azure/azure-sdk-for-go. (Dec. 31, 2024). Go. Microsoft Azure. Accessed: Jan. 02,
2025. [Online]. Available: https://github.com/Azure/azure-sdk-for-go

[117]​ GoogleCloudPlatform/k8s-cloud-provider. (Dec. 12, 2024). Go. Google Cloud
Platform. Accessed: Jan. 02, 2025. [Online]. Available:
https://github.com/GoogleCloudPlatform/k8s-cloud-provider

[118]​ M. Fogleman, fogleman/nes. (Nov. 29, 2024). Go. Accessed: Dec. 02, 2024. [Online].
Available: https://github.com/fogleman/nes

[119]​ H. Hoshi, hajimehoshi/ebiten. (Jan. 02, 2025). Go. Accessed: Jan. 02, 2025. [Online].
Available: https://github.com/hajimehoshi/ebiten

47

Malware Reverse Engineering​ ​ ​ ​ Mavel Christensen

[120]​ ‘Telegram – a new era of messaging’, Telegram. Accessed: Dec. 16, 2024. [Online].
Available: https://telegram.org/

[121]​ pepeground/pososyamba_bot. (Oct. 16, 2021). Go. Pepeground. Accessed: Dec. 13,
2024. [Online]. Available: https://github.com/pepeground/pososyamba_bot

[122]​ ‘sync package - sync - Go Packages’. Accessed: Jan. 02, 2025. [Online]. Available:
https://pkg.go.dev/sync

[123]​ ‘The Go Memory Model - The Go Programming Language’. Accessed: Jan. 02, 2025.
[Online]. Available: https://go.dev/ref/mem

[124]​ ‘High Level Assembler and Toolkit Feature 1.6.0’. Accessed: Dec. 04, 2024. [Online].
Available: https://www.ibm.com/docs/en/hla-and-tf/1.6?topic=statements-ds-instruction

[125]​ ‘What is a processor register?’, Educative. Accessed: Dec. 17, 2024. [Online].
Available: https://www.educative.io/answers/what-is-a-processor-register

[126]​ ‘What is x64dbg + How to Use It’. Accessed: Dec. 16, 2024. [Online]. Available:
https://www.varonis.com/blog/how-to-use-x64dbg

[127]​ ‘CSS RGB and RGBA Colors’. Accessed: Jan. 02, 2025. [Online]. Available:
https://www.w3schools.com/css/css_colors_rgb.asp

[128]​ M. Damke, ‘Malware Analysis | Building Lab | Static & Dynamic | By Mohit Damke’,
Medium. Accessed: Dec. 10, 2024. [Online]. Available:
https://medium.com/@mohitrdamke/malware-analysis-build-lab-by-mohit-damke-2c7b
e29f2c34

[129]​ ‘Global Leader of Cybersecurity Solutions and Services’, Fortinet. Accessed: Dec. 10,
2024. [Online]. Available: https://www.fortinet.com/?type=1652177826

[130]​ ‘Bitdefender - Global Leader in Cybersecurity Software’, Bitdefender. Accessed: Dec.
10, 2024. [Online]. Available: https://www.bitdefender.com/en-us/

[131]​ ‘How can I remove Trusted Installer from Administrator? - Microsoft Q&A’. Accessed:
Dec. 11, 2024. [Online]. Available:
https://learn.microsoft.com/en-us/answers/questions/629973/how-can-i-remove-truste
d-installer-from-administra

[132]​ vinaypamnani-msft, ‘Microsoft Defender SmartScreen overview’. Accessed: Dec. 11,
2024. [Online]. Available:
https://learn.microsoft.com/en-us/windows/security/operating-system-security/virus-an
d-threat-protection/microsoft-defender-smartscreen/

[133]​ ‘What is AddInProcess.exe (AddInProcess.exe)? 4 reasons to/NOT trust it’. Accessed:
Dec. 11, 2024. [Online]. Available:
https://www.spyshelter.com/exe/microsoft-corporation-addinprocess-exe/

48

Malware Reverse Engineering​ ​ ​ ​ Mavel Christensen

List of Images

●​ Figure 1: simplified model of software code translation, from source code to
disassembled code.

●​ Figure 2: Example of decompiled code (on the left) and the original disassembled
code (on the right) using IDA. Source: Zhuo Zhang[33]

●​ Figure 3: example of a YARA rule, telling the tool that any file containing one of the
three strings must be reported as silent_banker. Source: YARA documentation[97]

●​ Figure 4 and 5: a post sharing IoCs and a thread detailing an attack and related
RE findings.

●​ Figure 6: TS “Investigation” process during Incident Response. Source: TS internal
documentation

●​ Figure 7: content of pennicle.txt.ps1
●​ Figure 8: creation of a new folder by the malware
●​ Figure 9: metadata of the malware and OG version of GetWindowText
●​ Figures 10 and 11: digital signature and certificate of OG software
●​ Figure 12: screenshot of some defined strings in the malware, the suspicious one

being highlighted
●​ Figures 13 and 14: excerpts from tidied-up string
●​ Figures 15 and 16: examples of one’s findings when trying to find context for the

string “crypto/rsa”
●​ Figure 17: function call graph starting from the “entry” function
●​ Figure 18: example of the malware’s “while true” loops
●​ Figure 19, 20 and 21: examples of references to Windows Registers in the

debugged malware
●​ Figure 22: example of process injection
●​ Figure 23: potential file extensions hidden in the malware
●​ Figure 24: functions and data types hidden in the malware
●​ Figures 25, 26 and 27: code hidden in the malware
●​ Figure 28: Suspicious queries recorded by Wireshark
●​ Figure 29 and 30: VirusTotal analysis results for the malicious URLs
●​ Figure 31: logs from the mock API
●​ Figure 32: screenshot of an analysis of the suspected malware performed by

VirusTotal.

49

Malware Reverse Engineering​ ​ ​ ​ Mavel Christensen

List of Tables
●​ Table 1: various IoCs from the analysed malwares

50

	
	Malware Reverse Engineering
	
	Abstract
	Acknowledgements
	Table of Content
	
	Introduction and problem statement
	Problem area
	Problem statement
	Delimitations
	Report Disposition

	Methodologies
	Research
	Design-Based Research
	Expected project timeline

	Part 1: theory
	Reverse engineering
	General definition
	Process
	Static analysis
	Analysing stored strings
	Analysing program headers
	Disassembling code
	
	Figure 1: simplified model of software code translation, from source code to disassembled code.
	Source: Practical Malware Analysis[18]

	Decompiling
	
	Figure 2: Example of decompiled code (on the left) and the original disassembled code (on the right) using IDA. Source: Zhuo Zhang[33]

	​Symbolic Execution

	Dynamic analysis
	Debugging
	Network Forensics
	Memory forensics
	Emulation and sandboxing

	Reverse engineering malware
	Why reverse engineer malware?
	Common malware types
	Typical malware anatomy
	Potential RE findings
	Real world examples
	
	Anti-forensics techniques
	Masquerading
	Detection of Virtual Machine/Potential Forensics environment
	​Embedded payloads and injections
	Encryption
	​Obfuscated API calls
	​Poly/Metamorphic code
	Packed programs

	Conveying RE findings
	Using IoCs
	
	Figure 3: example of a YARA rule, telling the tool that any file containing one of the three strings must be reported as silent_banker. Source: YARA documentation[97]

	Reporting
	Social media posts
	
	Figures 4 and 5: a post sharing IoCs and a thread detailing an attack and related RE findings.
	Source: Mastodon[99], X[100]

	
	Part 2: case study presentation
	Presentation of the analysed Malware
	Origin
	Early assertions about the malware

	Analysis tools and environment
	

	Analysis methods
	Conveying findings
	

	Part 3: Analysis
	Analyzing the downloader, “pennicle.txt.ps1”
	​Static code analysis
	
	Figure 7: content of pennicle.txt.ps1

	Dynamic Analysis
	
	Figure 8: creation of a new folder by the malware.

	Analysing the additional payload, “GetWindowText.exe”
	Examining additional files in the .zip
	Investigating the malware’s metadata
	
	Figure 9: metadata of the malware and OG version of GetWindowText
	
	Figures 10 and 11: digital signature and certificate of OG software

	Analysing the program header
	Imported libraries and functions

	Analyzing stored strings
	
	Figure 12: screenshot of some defined strings in the malware, the suspicious one being highlighted
	Deobfuscating the suspicious string
	
	
	Figures 13 and 14: excerpts from tidied-up string

	
	Disassembling and decompiling
	
	Figure 15 and 16: examples of one’s findings when trying to find context for the string “crypto/rsa”
	
	Figure 17: function call graph starting from the “entry” function
	
	Figure 18: example of the malware’s “while true” loops

	Symbolic Execution
	Debugging
	
	
	
	Figures 19, 20 and 21: examples of references to Windows Registers in the debugged malware
	
	Figure 22: example of process injection
	Figure 23: potential file extensions hidden in the malware
	
	Figure 24: functions and data types hidden in the malware
	
	
	
	Figures 25, 26 and 27: code hidden in the malware that hints at json and yaml formatting and exfiltration capabilities
	

	Network Analysis
	
	Figure 28: Suspicious queries recorded by Wireshark
	
	
	Figures 29 and 30: VirusTotal analysis results for the malicious URLs
	
	Figure 31: logs from the mock API

	Memory analysis
	
	Figure 32: screenshot of an analysis of the suspected malware performed by VirusTotal.

	Conveying findings
	IoCs
	Table 1: various IoCs from the analysed malwares

	Analysis report
	Blog posts

	Conclusion
	
	Bibliography
	List of Images
	List of Tables

